
GPO PRICE $ 

CSFTI PRICE(S) $ 

Hard copy (HC) 

Microfiche (MF) ,A. 
ff 653 July 65 

S I  D 67-498 

STUDY OF APOLLO WATER IMPACT 
FINAL REPORT 

VOLUME 8 

UNSYMMETRIC SHELL OF 
REV OL UT I 0 N A N  A LY S I S 

(Contract NAS9-4552, G.O. 5264) 

May 1967 

P r e p a r e d  by  

A .  P. Cappelli 

f 
T.  Nishimoto 

P. P. Radkowski 
K . E .  Pauley 

(Authors) 

/--7 Approved b y  

F . C .  H& 
P r o g r a m  Manager - 

Struc tures  and Mater ia l s  

N O R T H  A M E R I C A N  A V I A T I O N ,  I N C .  

SPACE DIVISION 



S I  D 67-498 

STUDY OF APOLLO WATER IMPACT 
FINAL REPORT 

VOLUME 8 

UNSYMMETRIC SHELL OF 
REV OL UT I 0 N A N A LY S I S 

(Contract NAS9-4552, G.O. 5264) 

P r e p a r e d  by 

A .  P. Cappelli 
T .  Nishimoto 

P. P. Radkowski 
K.  E.  Pauley 

(Authors) 

F,\ Approved by 

P r o g r a m  Manager 
S t ruc tures  and Mater ia l s  

L . A .  H a r r i s  
A s s i s taut Mana g e r 

Science and Tcchnolugy 

N O R T H  A M E R I C A N  AVIATION,  INC.  
SPACE DIVISION 



FOREWORD 

This repor t  was prepared  by North American Aviation, Inc. ,  Space 
Division, under NASA Contract  NAS9-4552, f o r  the National Aeronautics and 
Space Administration, Manned Space Flight Center,  Houston, Texas, with 
Dr .  F. C. Hung, P r o g r a m  Manager and Mr .  P. P. Radkowski, Assis tant  
P r o g r a m  Manager. 
S t ruc tura l  Mechanics Division, MSC, Houston, Texas with Dr.  F. Stebbins 
a s  the technical monitor.  

This work was adminis tered under the direct ion of 

This repor t  i s  presented i n  eleven volumes for  convenience in handling 
and distribution. A l l  volumes a r e  unclassified. 

The objective of the study was to develop methods and F o r t r a n  IV  
computer  p rograms  to determine by the techniques descr ibed below, the 
hydro-elast ic  response of representat ion of the s t ruc tu re  of the Apollo Com- 
mand Module immediately following impact on the water ,  The development 
of theory,  methods and computer programs i s  presented a s  Task  I Hydro- 
dynamic P r e s s u r e s ,  Task  I1 Structural  Response and Task  111 Hydroelastic 
Response Analysis. 

Under Task  I - Computing program to extend flexible sphere  using the 
Analytical formulation Spencer and Shiffman approach has  been developed. 

by Dr. L i  using nonlinear hydrodynamic theory on s t ruc tu ra l  portion i s  
formulated.  In o r d e r  to cover a wide range of impact  conditions, future 
extensions a r e  necessa ry  in the following i tems:  

a. Using l inear  hydrodynamic theory to include horizontal velocity 
and rotation. 

b. Nonlinear hydrodynamic theory to develop computing program on 
spher ica l  portion and to develop nonlinear theory on toroidal and 
conic sections.  

Under Task  I1 - Computing program and U s e r ' s  Manual were  developed 
for  nonsymmetr ical  loading on unsymmetr ical  e las t ic  shells.  
develop the theory and methods to cover rea l i s t ic  Apollo configuration the 
following extensions a r e  recommended: 

To ful ly  

a. Modes of vibration and modal analysis.  

b. Extension to nonsymmetric shor t  t ime impulses .  



c. Linear  buckling and elasto-plast ic  analysis  

These technical extensions will not only be useful for  Apollo and 
fu ture  Apollo growth configurations, but they will a l so  be of value to other  
aeronautical  and spacecraf t  programs.  

The hydroelastic response of the flexible she l l  is  obtained by the 
numer ica l  solution of the combined hydrodynamic and she l l  equations. 
r e su l t s  obtained herein a r e  compared numerical ly  with those derived by 
neglecting the interact ion and applying rigid body p r e s s u r e s  to the s a m e  
e las t ic  shell, 
impact  of the par t icular  shell  studied, the interact ion between the shel l  and 
the fluid produces appreciable differences in the overa l l  accelerat ion of the 
center  of gravity of the shell ,  and in  the distribution of the p r e s s u r e s  and 
responses .  However the maximum responses  a r e  within 1570 of those pro-  
duced when the interaction between the fluid and the she l l  is neglected. A 
brief summary  of resu l t s  is shown in the abs t r ac t s  of individual volumes. 

The 

The numerical  resu l t s  show that for  an axially symmet r i c  

The volume number and authors  a r e  l is ted on the following page. 

The con t r ac to r ' s  designation for  this r epor t  is SID 67-498. 
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ABSTRACT 

A general  numerical  procedure is  presented  for 
determining the s ta t ic  and dynamic response  of she l l s  
of revolutions with a r b i t r a r y  distributions of st iffness 
subjected to a r b i t r a r y  loads and t empera tu res .  These  
formulations a r e  based o n  Sander ' s  l inear  f i r s t  o r d e r  
shel l  theory which was modified to include the  effect of 
t r a n s v e r s e  shea r  distortion. The method cons is t s  of 
a F o u r i e r  analysis  to  separa te  the c i rcumferent ia l  
var ia t ion in the governing equations. This  r e su l t s  in  
equations with the coefficients coupled in  the Four i e r  
index. 
to  an algebraic  form by finite difference. 
Four i e r  components of the solution a r e  obtained by a 
ma t r ix  elimination procedure of this  form of the 
governing equations. 

The mat r ix  form of this  equation i s  reduced 
The unknown 

The numer ica l  analysis i s  mechanized for  solution 
on the digital computer.  
c ompar i  sons a r  e p r e  s ent ed. 

Numerical  examples  and 

The procedure i s  general  and yields accura te  solu- 
t ions for complicated s t ruc tura l  response for  both 
s ta t ic  and dynamic conditions. 

- v i 1  - 
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. 
SYMBOLS 

FOURIER COEFFICIENTS 

T 
m 

T T  T 
t t m f n j  en’ 5n’ en  

C d mj’  mj’ mj’  ’mjJ ’12j’ ‘13j 

‘5kt1, 5 j t 1  ‘5kt5, 5 j t 5  

‘5kt1, 5 j t 1  ‘5kt5, 5 j t 5  

b 

- - - - -  

_ - - _ -  

- - _ - -  
h 5 k t l ,  5 j t l  h5kt5,  5 j t 5  

- a  - - - -  a 
5k t1 ,  5 j t l  5kt5,  5 j t 5  

r - - - - -  r 
5kt1 ,  5 j t l  5kt5,  5 j t 5  

S - - - - -  S 
5kt1 ,  5 j t l  5k t5 ,  5 j t 5  

_ _ - - _ - _ _  
‘5kt1 ‘5kt5 

= displacements and rotations 

= loads 

= t empera ture  induced force  t e r m s  

= force  resul tants ,  modified and 
effective 1 

= st i f fnesses  

= elements  of F, G ,  H, a ,  p, p,  R, 
S, and 1 
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COORDINATES* CONSTANTS AND VARIABLES . 
coordinates 

normal  dis tance f rom shel l  axis  

meriodional shell  coordinate 

spacial  and t ime finite difference 
increments  

re ference  constants 

nondimensional curva tures  

displacements  and rotations 

s t r e s s e s  

s t r a ins  

bending distortion 

stiffness functions 

m a t e r i a l  p roper t ies  

loads 

t empera tu re  change 

m a s s  distribution 

external  damping 

e las t ic  foundat ion pa ramet  e r  

force resil l tants,  modified, 
effective,  and t empera tu re  induced 



-' MATRICES 

F, G, H, 9 ,  A ,  R, S ,  a,  p, L, M , N  5 K x 5 K o r d e r  

p, 1, x 5K x 1 o r d e r  

INDICES 

i, j ,  n Dummy 

k kth Four ie r  component 

... - S l l l  - 



1. 0 ANALYSIS 

1.1 INTRODUCTION 

A genera l  numer ica l  procedure i s  presented for  determining the 
response of shel ls  of revolutions with a rb i t r a ry  distributions of st iffness 
subjected to a r b i t r a r y  loads and temperatures .  
problem wil l  be presented and the specialization fo r  the s ta t ic  analysis  will 
be made. 

The dynamic response  

The analysis  is based on a modified fo rm of the general  first o r d e r  
l i nea r  she l l  theory of Sanders.  
include t r a n s v e r s e  shea r  distortion, see Appendix 1 - 1. 
equilibrium equations a r e  extended to include t ime dependence by D' Alembert '  s 
principle. 
fe ren t ia l  direction and a sys t em of finite difference approximations a r e  used 
to  reduce the par t ia l  differential  equations to an algebraic  set. 
solved by using a d i r ec t  matrix elimination procedure.  

These equations have been modified to 
The modified 

F o u r i e r  analysis  is  used to separate  var iab les  in the c i rcum-  

This  s e t  is 

The m a t e r i a l  presented is  an extension of the work by Sanders ,  
Budiansky and Radkowski, and Johnson and Gre i f  - Ref 1, 2 ,  3.  The notation 
used  is  ident ical  to that of Ref. 2 except where  noted. 

1.2 LIMITATIONS 

The shel l  theory on which these  programs a r e  based  is r e s t r i c t ed  to 
l i nea r ,  e las t ic ,  thin shel l  theory. 

1. 

2. 

3. 

4. 

The thickness of the shel l  at any point is  sma l l  compared to the 
other dimensions. 

Deformations of the shel l  a r e  small compared  to  the dimensions 
of the shell. 

All m a t e r i a l  points of the shell deform elast ical ly ,  obeying 
Hooke's law for  ortholropic mater ia ls .  

The shel l  is  "complete", i. e . ,  its only boundaries a r e  a t  
mer id ian  ends and inner  and outer surfaces .  

- 1 -  



5. The c l a s s  of shel ls  considered was a sur face  of revolution 
re ference  surface which is  within o r  i n  c lose proximity of the 
shel l  wal ls  . 

6. The p a r a m e t e r s  of st iffness,  e. g., in-plane s t i f fnesses  a r e  
permit ted to va ry  in both the meridional  and circumferent ia l  
directions.  Implied is  that p a r a m e t e r s  such as thickness,  Young's 
modulus,  e tc . ,  a r e  permi t ted  to  v a r y  in  both the meridional  and 
ci  r cumf e r  entia1 directions.  

I 

7. Arb i t r a ry  loads and t empera tu re  distributions are permissible .  

8. The effects of t r ansve r se  shea r  is included. 

9. Instabil i ty is not considered. 

10. Arb i t r a ry  distribution of mass, e las t ic  foundation and ex terna l  
damping is included. 

1 .3  SHELL COORDINATE SYSTEM 

The c l a s s  of shel ls  considered mus t  have a sur face  of revolution 
reference sur face  lying within o r  i n  c lose  proximity of the shel l  walls. 
Mater ia l  points of the shel l  a r e  then descr ibed  by an  orthogonal coordinate 
sys tem (s, 8 ,  5 ) based  on this reference.  The meridional  dis tance (s)  is  a 
m r e a s u r c  f r o m  a boundary along the re ference  surface.  
angle ( e )  is  a m e a s u r e  f rom some convenient re ference  and the no rma l  
m e a s u r e  ( G )  is the distance f rom the re ference  sur face  m e a s u r e d  along the 
outward no rma l  to the re ference  surface.  

The c i rcumferent ia l  

The geometry  of the re ference  sur face  is given by r (s) ,  when r is  the 
distance f rom the axis ,  the pr incipal  r ad i i  of curva ture  a r e  

r -1 /2  

1-1 

1-2 

Introduce the nondimensional mer id iona l  coordinate = s /a ,  where  a is  
a re ference  length; then, with P = r/a,  the nondimensional curva tures  
bc = a / R s  and LU a / R e  can be found f r o m  the formulas  0 

- 2 -  



r =i O P  
Y = P ' /P  

In these  equations, and henceforth, 

Finally f r o m  the Codazzi relation we obtain 

ub = y ( w5 - w e )  

and the relation 

1 - 3  

1 -4  

1-5 

1-6 

1-7  

1.4 EQUATIONS O F  MOTION 

The general  equilibrium equations for  an a r b i t r a r y  shel l  based on the 
f i r s t - o r d e r  l inear  shel l  theory of Sanders a r e  given in  Ref. 1. These  equa- 
tions a r e  modified to include the)effect  of t r ansve r se  shea r  distortion by the 
procedure  suggested by Sanders.  These equilibrium equations a r e  extended 
to equations of motion by use  of D'Alembert ' s  principle. 
special ized for  a shel l  whose reference sur face  is a sur face  of revolution a r e  
given as, 

These equations 

1-9 .1  

- 5 -  



1-9. 3 

Where the components of membrane  fo rce ,  t r a n s v e r s e  f o r c e  and 
moment  (about the reference sur face)  p e r  unit length, and load pe r  unit a r e a  
(assumed to be applied a t  the r e fe rence  su r face )  a r e  shown in F igu res  1.2. 

- 4 -  



Figure  1-1. Displacements, Membrane Forces ,  T ransve r se  

F igu re  1-2. Moments, Loads, Rotations 

In the Sanders '  f i r s t - o r d e r  theory the inplane shear ing fo rces  NCe and 
N e t  as wel l  as twisting moments  ME0 and Me( a r e  not handled separately,  
but ins tead  a r e  combined to fo rm modified var iab les  

1-10 



and 

It i s  necessa ry  when including the effects of t r a n s v e r s e  shea r  dis tor t ion 
to consider five equilibrium equations. 
deformation is neglected the shea r  fo rces  a r e  eliminated and result ing equili- 
br ium equations a r e  reduced to  the consideration of t h ree  equations. 
neglecting of t r ansve r se  shea r  s t r a ins  implies  that  normals  to middle s u r -  
face of the shel l  remain normal  a f te r  deformation. 
introduced by this assumption naturally depends on the magnitude of t r a n s -  
v e r s e  shearing forces  and shear  rigidity of the shell. 
loads and shel ls  having low shear  rigidity (sandwich shel ls) ,  shear  deform-  
ations may be comparable to bending and axial deformations and cannot be 
ignored. 

Recall  in  Ref. 1 that when shea r  

The 

The degree of e r r o r  

F o r  discontinuous 

It is necessa ry  when including the effects of t r a n s v e r s e  shea r  d i s tor -  
tion to consider five equilibrium equations ra ther  than the reduced se t  of 
t h ree  equations ( see  Ref. 1) that  can be used when shea r  deformation i s  
neglected. 

It should be noted that  for  she l l s  which do not posses s  a common ref -  
e rence  surface of revolution the m o r e  genera l  fo rm of Sanders equations fo r  
an a r b i t r a r y  shell  mus t  be utilized. 

1.5 FORMULATION INTO SOLUTION VARIABLES 

The equations of motion a r e  now expres sed  in  t e r m s  of the solution 
var iab les ,  displacements and rotations.  

The force  and moment  express ions  in  the equations of motion a r e  
determined by evaluating the following in tegra ls  through the thickness. 

I 

- 6 -  
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where  in  the above in tegra ls  we have neglected t e r m s  of o r d e r  </R , R is the 
minimum radius  of curvature.  The s t r e s s e s  used above a r e  defined as: 

ut , ue a r e  no rma l  s t r e s s e s ,  acting on the faces  

is an  inplane s h e a r  s t r e s s  acting para l le l  to the re ference  
sur face  ' S  e 

a r e  t r a n s v e r s e  s h e a r  s t r e s s e s  acting normal  to the r e fe rence  
sur face  Tu ' Te< 

By assuming that plane sections before remain  plane a f te r  deformation the 
s t r a ins  at a distance < f r o m  the reference surface can be expressed  in t e r n i s  
of the re ference  surface s t r a ins  a s  follows: 

1- 1 2  

6, t e and E whe re  c 

one-half the usual  engineering s t ra in .  
a r e  the s t r a in  of the re ference  sur face  and E c e  ( 5 )  is  (e 

The s t r e s s - s t r a in - t empera tu re  relations for  an orthotropic m a t e r i a l  
a r e  

G Y  ' S t ; '  e e (  1 - 1 3  



From a consideration of orthotropic ma te r i a l s  an identity v 5 8 E 
- - v e 5 E 5 w i l l  be  utilized. (See express ions  f o r  B3, C3 and D3 Eq  1-15.) 

Substituting these  equations into Eqs. 1 - 11 employing appropriate  
integrations through the thickness yield the following s t r e s s / r e s u l t a n t s -  
s t r a in  relations hips. 

N E  = B1cE, t B E t C k t C3ke - N; 
3 8  1 5  

N e = B  E t B  E t C k  t C k  - N e  T 
3 5  2 e  3 5  2 8  

G Y  * S =  2 5 s  

M ( = C l E S t C  t D  k + D 3 k e - M c  T 
3 8  i~ 

M e = C  E t C E t D  k t D 2 k 0 - M e  T 
3 6  2 0  3 6  

where  in  the above equations the shel l  s t i f fnesses  are given by 

1-14 

- 8 -  



1-15 G1 = JGdL G 2 = JG5di G3 = /Ged5 G13 = / GL2d& 

and thermal loads are 

- 9 -  
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In evaluating the st iffness quantit ies,  the re ference  sur face  i s  chosen 
a t  a convenient location within the shel l  wall. It is not possible to simplify 
these expressions for  the general  ca se  of shel ls  having varying meridional  
and circumferent ia l  st iffness propert ies .  ( F o r  shel ls  of revolution, it was 
possible ( see  Ref. 2) to  select  a convenient location for  re ference  such that 
C, G12 stiffness quantities descr ibed above vanished. 

. 

F o r  the case  of mult i layer  shel ls  the integration i s  taken layer  piece- 
wise through the thickness because of the discontinuities caused by different 
propert ies  of such layer .  
form,  

The shel l  st iffness and the rma l  loads take the 

J 

Figure  1-3. Multi layer Configuration 

- 10 - 
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The re ference  surface s t r a ins  may be defined in t e r m s  of displacements  
and rotat ions by the following expressions.  
re fe rence  sur face  a r e  given by 

The membrane  s t r a ins  of the 

1-18 

where  U, V, W a r e  displacements i n  tHe 5 ,  8 and < direct ions respectively.  
T r a n s v e r s e  shea r  s t r a ins  a r e  given by 

where  c ,  a r e  rotations. 

The bending distortion t e r m s  a r e  given by 

1-19 

- 11 - 



Substituting equations 1-18, 1-19, 1-20) into equation 1-14 the force  
t e r m s  in the equations of motion can be expressed  in  t e r m s  of the 
di s placem en t s 

- 1 2  - 



By employing the relations of Eq. 1-2 1,  the equation of motion can 
be expres sed  in  t e r m s  of the dependent var iables ,  displacements and rotations. 

- 13 - 
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2 . 0  NUMERICAL ANALYSIS 

2 . 1  FOURIER EXPANSIONS 

The analysis  utilized i s  a Four ie r  approach which will pe rmi t  separat ion 
of var iab les  and yield a m o r e  tractable se t  of shell  equations. 
involves expanding of the pertinent var iables  in F o u r i e r  s e r i e s  with appro-  
p r i a t e  normalization to provide nondimensional F o u r i e r  coefficients of roughly 
comparable  magnitudes fo r  different var iables .  
re fe rence  s t r e s s  level, Young’s modulus, and thickness respectively,  solu- 
t ions for the field equations a r e  sought in  the f o r m  

The procedure 

Letting coJ Eo, ho be a 

u t =  - u ( E J  t) C O S  ne  
E n 

0 h=O 

u, = - ( k J  t) s in  n e  

0 n = 1  

O n=O 

“ - w  

O n=O 

(2: 1) 
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These  Four ie r  expansions a r e  consistent with loadings of the fo rm 

The above Four i e r  expansions a r e  not the  m o s t  genera l  f o r m  that can 
exist .  The expansions q , q  a r e  symmetr ica l  expansions about 8 = 0 .  F o r  
full generality, they mus t  be augmented by additional sine s e r i e s  expansions.  
The  fo rm in turn  would be supplemented by cosine s e r i e s .  Similar i ly ,  a 
convenient set  of sine expansions m u s t  hold for  displacements  and rotations.  
F o r  ease  of presentation the condensed forin of expansions (Eqs .  2-1, 2 - 2 )  
will be  used. The contribution of augmented t e r m s  in the s e r i e s  expansion 
will be described l a t e r .  

t s k  

Expansions fo r  the tempera ture  distributions m a y  be descr ibed in a 
s imi l a r  manner;  however, since the t h e r m a l  coefficients and Y o u n g ' s  modulus 
can  v a r y  in the circumferent ia l  direction, it will be m o r e  convenient to expand 
the thermal  load in Four i e r  s e r i e s  a s  follows 

T T 
kn 

= uoho t C O S  n e  
n= 

N 2  

T T 
On 

t c o s  n e  N = u h  f 
0 0  n=O e 

cos  n e  T T 
En n-0 
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Where the Four i e r  components t T gn , t e n  T , m e n  T a n d m e n  a r e  
given by 

0 0  
JO 

Since  the s t i f fness  p a r a m e t e r s  a r e  var iable  in the c i rcumferent ia l  
dircct ions these will a lso be expanded in a F o u r i e r  s e r i e s .  
thc expansion for the extensional stiffness pa rame te r  is  of the f o r m  

F o r  example, 
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In the Apollo heat shield shell, there  exis ts  a plane of symmetry  with 
respec t  to planform geometry.  See F i g .  (2-1) .  

F igu re  2-1. Stiffness Prof i le  

A plane of symmet ry  will be a l so  a s sumed  in th i s  study. In such a 
c a s e  the sine t e r m s  in Eq. 2-5 a r e  dropped and the  coefficients of B viz.  
b. a r e  found by integrations of the f o r m  

J 

b. = $  6" B (6 , e )  C O S  je de  
J 

- 18 - 
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In o rde r  to determine the accuracy of the F o u r i e r  s e r i e s  representat ion 
of the Apollo heat shield configuration severa l  numer ica l  examples were  run. 
T h e  resu l t s  of the  comparison can be seen in Fig.  2 - 2  where extensional 
r igidity ve r sus  c i rcumferent ia l  coordinate is  plotted for  four t r i a l  ca ses  
using 10, 15, 20 and 30 Four i e r  components of solution. 

- 19 - 



The Four i e r  expansions of the shel l  s t i f fness  p a r a m e t e r s  (Eq.  1-15), 
consistent with previous formulation a r e  given by 

3 
00 

3 
D m E 0 0  h 1 d m ( E )  cos j e ,  G13 = E  0 0  h 2 g l , j ( c )  :os j e  ( 2 - 7 )  

j =O j = O  j 

Substitution of the displacement (rotation) s e r i e s  expansions (Eqs .  2 -1) 
and the above stiffness expansions into Eqs .  (1-21) and employing the proper  
tr igonometric identities yields the following s e r i e s  expressions rclating 
fo rces  (moments) in t e r m s  of the F o u r i e r  coefficients of the displacement  
var iables  and stiffness pa rame te r s :  

- 20 - 



N e = u h  2 
n=O 

0 0  

B;'(T auj t W t w j )  t B: (w. t--v U t w 

J P j  e j  
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n Q , = a h  0 0  2 [ $ [ G y (  - w  v - -  
n = l  j=O 
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.. = o- h [ f M ? ~ j ]  C O S  n e  0 0  
n=O j = o  

1 M~~ i; sin n e  
2 j  

r 1 

1 n=O j = o  

r 1 

r 1 
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n = l  

c o s  n e  
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w h e r e  

a 

T h e  s t i f fness  r e c u r s i o n  re la t ionships  above a r e  d e s c r i b e d  in the  f o r m  

w h e r e  the spec i f ic  coef f ic ien ts  of i n t e re s t  (dropping nj s u p e r s c r i p t )  a r e  
given b y  

and  

.<. -6. 

( S o c  Appendix 1 .2  (niult iplication of s e r i e s  e x p r e s s i o n s )  fo r  a m o r e  de ta i led  
d o s c r i p t i o n  of ~~j ant1 ~ n j . 1  
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In the above express ions  the symbolic function 6 (m) is defined as 

-1 m < O  

0 m = O  

t 1  m > O  

6 (m) = (2-10) 

2 .  1. 1 Reduced Equations 

Substitution of the s t r e s s  resultant express ions  (Eqs .  2.8) into the 
Equations of Motion (Eqs.  1-9) yields five finite s e r i e s  expressions in  the 
circumferent ia l  coordinate relating the F o u r i e r  coefficients Uj, vj, Wj, @kj, 
and 4ej of the displacement and rotation var iables .  
t ions we t runcate  the s e r i e s  solution of the dependent var iab les  to K t e r m s  
in the Four i e r  component. 
ships of Four ie r  s e r i e s  to these  equilibrium express ions  yields a sys tem 
of 5K ordinary differential  equations relat ing the 5K unknown Four i e r  
coefficients. 
programming and a r e  given as follows: 

F o r  pract ical  cons idera-  

Employing the appropr ia te  orthogonality re la t ion-  

These equations a r e  presented  in  a f o r m  amenable f o r  computer  

I I  VI '  I I  

( 5 k t 1 ,  5 j t l ) u j  ' f ( 5 k t 1 ,  5 j t 2 )  j t f ( 5 k t 1 ,  5 j t 3 ) w j  

+" t f 
-t f ( 5  k t 1, 5 k t 4 )  { j  (5 k t 1, 5 kt5) ' ; j  "(5 k t 1 ,  5 j t l ) u i  

( 5 k t 1 ,  5 j t 5 )  e j  @ I  U .  t - - - t  h 
t - g t g ( 5 k + l , 5 j t 5 ) ' e j  t h ( 5  k t l ,  5 j t l )  J 

(5 k t 1, 5 j t 1)'j 
ii, t p 

( 5 k t 1 ,  5 j t l )  J 
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II 

u t f  v . ' t - - - t  f . 5' [ f (5k t2 ,  5j- t l )  j ( 5k t2 ,  5 j t2 )  ( 5 k t 2 ,  5 j t5 )  
j = O  

? 

g(5k t2 ,  5 j t 1 )  u . t . .  J ' ' (5kt2, 5 j t 5 ) + 8 j  h(5kt2 ,  5 j t1 )  u j  

k 
(5kt2 ,  5 j t5 )  = ' 2  cr(5kt2,  5 j t 2 ) V j  "(5kt2, 5 j t 2 ) v j  

t . .  . t h  

y1 [ f (5k t3 ,  5 j t1 )  u. t f (5k t3 ,  5 j t 2 )  v . ' t . .  . t f  ( 5k t3 ,  5 j t5)  cp ej  I '  

j = O  

' (5kt3,  5 j t l )  u . ' t  J * . . g(5kt3 ,  5 j t l )  'bj h ( 5 k t 3 , 5 j t l )  u j  

.. 
t . .  . - t h  ( 5 k t 2 ,  5 j t 5 )  "j a (5k t3 ,  5 j t 3 ) w j  "(5kt3, 5 j t3 )wj  

y1 [ f ( 5 k t 4 ,  5j i  1) u". J t . . t . f (5k t4 ,  5 j t5)  4;; g(5k t4 ,  5 j t l )  "; 
j -  0 

1 

cp + h  u t . .  . "(5kt4, 5 j t5 )  e j  (5k t4 ,  5 j t l )  j 1 .  . .  

k 
t h  (5k t4 ,  5 j t5 )  'ej] = '4 @(5kt4,  5 j t 4 )  '6 "(5kt-4, 5jt-4) cp c j  
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t I t  

(5kt5,  5j t5)  'ej "(5kt5, 5jt1) ui y1 [f(5k+5, 5 j t l )  u . + .  1 . . t f  
j=O 

t h  t . .  . t g(5kt5,  5j t5)  'e j  (5kt5,  5 j t l )  t .  . . . 

k .. 
" ' h(5kt5,  5jt5)'OjI = '5 = Q(5kt5,  5 j t5)%j  ' '(5kt5, 5 j t5)  iOj 

( k = 0 , 1 , 2 ,  . . . . . K - 1 )  (2-1 1) 

where  the f a  g ,  h and p coefficients a r e  descr ibed in  Appendix 1-3. 
be  noted that the f o r m  of the above equations is m o r e  complicated than was  
obtained in Ref, (2) for  analysis  of shel ls  of revolution. 
a r i s e s  f rom the fact  that  the equilibrium equations cannot be decoupled f o r  
each Four ie r  component of displacement var iab les  f o r  the c a s e  of unsym- 
m e t r i c  shell, ) 

(It should 

This  complexity 

The above equation can be conveniently wri t ten in m a t r i x  f o r m  as  
f 0 llow 9 : 

F k l t  GL t ( H  t K)z = 0'; t pk t p 

where  Fa G, H, (5K x 5K) and z, pa (5K x 1) a r e  defined as  follows 

(2-12) 

F =  

- - - -  
$1 f12 

'2  1 

I 
I 
I 

G =  

- - -  
g l l  g12 

g21 
I 

I 

I 
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The elements  of the F, G and H m a t r i c e s  a r e  given in  Appendix 1.2 and 
a r e  presented there  in a format  which i s  designed to ease  computer p rogram-  
ming ,  The coefficients of P a r e  the F o u r i e r  components of the applied 
external  load and a r e  known quantities f o r  a specific loading case .  

The analysis  developed assumed that the loads q 
and q e  ant isymmetr ic  about o = o (eqs.  2-2) .  
t hese  expansions should be augmented by the following: 

q were symmet r i ca l  6’ 1; F o r  complete generali ty,  

n= 1 

(2-1 3)  

The m o r e  genera l  ca se  of shel ls  having a r b i t r a r y  distribution of 
s t i f fness ,  distribution of loads damping, and elast ic  foundation cannot be 
uncoupled in the same manner  a s  the c a s e  of plane of symmet ry  of s t i f f -  
n e s s  and a r b i t r a r y  loads.  
t ion of all the var iables ,  displacements,  rotations,  st iffness and loads,  mus t  
be c a r r i e d  in the analysis ,  
special  case formulated previously.  

In th i s  c a s e  the to ta l  F o u r i e r  s e r i e s  r ep resen ta -  

The ana lys i s  will follow the same f o r m a t  of the 

F o r  consistency, the dependent va r i ab le s  m u s t  s imi l a r ly  be 
modified.  F o r  the c a s e  of she l l s  having a plane of symmet ry  in st iffness,  
the  analysis would proceed in a s imi l a r  manner  a s  that  previously descr ibed.  
Now the solution represents  F o u r i e r  coefficients fo r  the augmented s e r i e s  
expansions, 
appropriate  change in sign in some of the coefficients. This  complete se t  
of coefficients will be presented a t  a later date .  
be superimposed for  the c a s e  of a gene ra l  loading condition. 

The coefficients of Eqs.  2-11 a r e  similar except f o r  an  

The solutions obtained can 

The  m o r e  genera l  ca se  of shel ls  having a r b i t r a r y  distribution of 
St i f fness ,  distribution of loads, damping and e las t ic  foundation cannot be 
uncoupled in the same manner  a s  the c a s e  of plane of symmet ry  of s t i f fness  
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and a r b i t r a r y  loads. In this c a s e  the t o t a l  F o u r i e r  s e r i e s  representation 
of a l l  the var iables ,  displacements,  rotations, st iffness and loads, mus t  
be c a r r i e d  in the analysis.  
special  ca se  formulated previously.  

The analysis will follow the s a m e  format  of the 

2 .  1 . 2  Boundarv Conditions 

Consistent with Sander ' s  equilibrium equations, the boundary conditions 
for  the specification of the fo rces  o r  displacements,  o r  constraint  between 
them are  descr ibed below. On the  edge where  = constant ( i . e . ,  = 0 
and 5 = s )  

Qc o r  W 

wherc  

T h e s e  conditions can be  expressed in matrix f o r m  by, 

n y t x z = a  

(2-14) 

(2-1 5) 

- -  - - -  
w h c r c  y ,  1 z a r c  column m a t r i c e s  and S2, A a r e  appropriate  diagonal 
m a t  r i c e s 
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- 
12 = 

Matr ix  
Elements  

W wi i Conditions at Boundary i 

0 

' 

c1 

'2 

Di s plac ement  S pe c i f  ied 

F o r c e  Specified 1 0 

1 

0 
c 3  

Constraint Conditions 1 

1 
w 

0 

2 
w 

C = value of displacement  

C = value of fo rce  

c = constant relating force 
and displacenient 

1 

2 

3 

3 w 

w 
0 4 

A 
1 

0 

x2 

x3 

o x  4 

x5 

- e =  

For  example, if Q e i s  given as a boundary condition then A4 = 1 
~ " 4  0 and e4 is the prescr ibed  value of a{. 
with the appropriate r e fe rence  constants ,  

Note Ci is nonditiii.nsionaLized 
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It will be convenient t o  expand forces  and moments  in F o u r i e r  s e r i e s  
in manner  consistent with the previous developments. Letting 

NE = t E  cos  ne c" 

(2-16) 

and 

e 3  =C c o s  ne 

t4 =It: c o s  ne 

e = e sin ne  
5 1; (2-17) 

T h e  above s e r i e s  express ions  together with Eqs.  (2-1) a r e  substituted 
into Eq. (2-15) and can be uncoupled f o r  each F o u r i e r  coefficient yielding 
t h o  following m a t r i x  f o n n  

!Zy + A Z  = e  
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where  

Y =  

Y1 

y2 

y3 

y4 

y5 

yK 

- Yi - 

0 

z =  i 

e =  

i 
U 

i 
V 

i 
W 

4); 

(2-18) 

It will be des i rab le  to  expres s  boundary conditions in  t e r m s  of the 
substitution of Eqs. (2-16) in  Eq. (2-8) with appropr ia te  orthogonality 
operations yields a set  of recurs ion  express ions  relating F o u r i e r  coefficients 
of forces  and moments  to the displacement and s t i f fness  coefficients. 
relationships a r e  given by 

These  

K- 1 
I 

u. t r @ I t s  
(5kt1 ,  5 j t l )  J (5kt1,  5j t4)  c j  (5k t1 ,  5 j t l )  "j tk = 1 [r  

j =O 

v t s  w.  t s 
(5kt1,  5 j t2)  j (5k t1 ,  5 j t5)  J (5k t1 ,  5j+4) '5.j 

t s  
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’ ] a5k t1  (5k t1 ,  5 j t 5 )  8 j  
t s  

K -  1 

‘k Ce = 1 [ r ( 5 k t 2 , 5 j t 2 )  v ,  J t r ( 5 k t 2 , 5 j t 5 )  ‘ j  t s  95kt2 ,  5 j t 1 )  uj  

j =O 

I t s  ( 5 k t 2 , 5 j t 2 )  v .  J t s ( 5 k t 2 , 5 j t 4 )  ‘ej “ ( 5 k t 2 , 5 j t 5 )  ’ j 
K -  1 

w: t s u. t s “ = I [ .  (5kt3, 5j-t-3) J ( 5k t3 ,  5 j t  1) J ( 5k t3 ,  5j+4) 
j =O 

q 5  

K -  1 
I 

= 1 [ r  u. t r ‘ I .  t s ( 5 k t 4 , 5 j t l )  J ( 5k t4 ,  5 j t4)  E J  ( 5 k t 4 , 5 j t l )  “j 
k 

j =O 
m5 

‘ I  v t s  w.  t s 4 . + s  ( 5 k t 4 ,  5 j t 2 )  j ( 5k t4 ,  5 j t 3 )  J ( 5 k t 4 , 5 j t 4 )  $ J  (5k+4,5j+5)  e j  
+ s  

f a  
5 k t 4  

K -  1 
1 

v.  t r ( 5 k t 5 ,  5 j t 3 )  J ( 5 k t 5 , 5 j t 5 )  ‘kj ’ (5kt5,  5 9 1 )  u j  
m k  = 2 [ r  

&J 

j =O 

t s  v .  t s 4 . + s  ( 5 k t 5 , 5 j t 2 )  J ( 5 k t 5 , 5 j t 4 )  tj ( 5 k t 5 ,  5 j t 5 )  

k C J ,  1 , 2 ,  - - - - - K- 1 
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Coefficients a r e  given in Appendix 1.3 

Equation 6 can be writ ten in  m a t r i x  notation a s ,  

y = R z '  t S z '  t x (2-20)  

Hence, the boundary conditions ( 3 7 )  become 

R R z ' t ( A t ~ S ) z = & - R x  (2-21) 

The f o r m  of Eq. (2-21) modified i f  the shcll  has  a pole (i. e . ,  r = 0 )  

because the coefficients of the  differential  equations become singular  f o r  th i s  
case .  
conditions supplied at the pole a r e :  

Following a s imi l a r  limiting p r o c e s s  a s  descr ibed  by Greenbaum the 

For Fourier index = 0 

= +eo = o 0 = 950 = $0 u = v  
0 

For Fourier index = 1 

: 
tS1- tSel - - mSi- mSel= 0 = 961 + +el u + v = w l  

1 1 

For Fourier index = 2 
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2 . 2  FINITE DIFFERENCE FORMULATION FOR THE MERIDIONAL 
VARIATION 

In a manner  s imi l a r  to that described in  Reference 2 the par t ia l  differ-  
ential  equation in the m a t r i x  fo rm (Eq. 2-12) i s  reduced by a sys tem of finite 
difference approximations. The variation in the meridional coordinate of the 
Four i e r  coefficients a r e  descr ibed pointwise in Eq. (2 -  12). 
a r e  finite difference f o r m s  for the par t ia l  differentials in the meridional  
coordinate a t  inter ior  points. 

The following 

(f - 2 f .  t fi  - 1) 
a2f 1 

a c 2  A2 i t1  1 
- -  - -  

2 -23 

where  A i s  the increment  along 6 and the subscr ipts  devote the d i sc re t e  values 
of the function taken. The fo rms  at boundary points (initial) 

2-24 
a f  1 - = - ( 3  f l  - 4 f 2  t f 3 )  
8 6  2A 

te rmina l  

2-25 

The r e su l t  of the application of the var ious finite difference f o r m s  can 
be s ta ted compactly a t  the following se t  of equations: 

AozZ t Bo z 1  t C 0 0  z = go 

Ai f i + l  t Bi zi  t Ci z ~ - ~  = g. 1 t 2 A  (ci 'zi t pi Z i )  

A z  - 
'N 'N-2 - g N  N N BN 'N-1 2-26 

Where 

A = - a  R 
0 0 0  

B = 2 a  / A R  
0 0 0 
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3~ €2 
0 0  

z A  C = h o t n  S o -  
0 0 

2-27 go = lo - Qo a. 

The subscr ipt  (0) r e f e r s  to the conditions a t  the init ial  boundary. 

2 F. 
Ai = 7 t Gi 

For i # 0, N 

1 

-4  F: 
Bi =I t 2A (Hi t K.) A 1 

2 Fi 

i 
c i = r -  G 

gi = 2 A  pi 

Finally for i = N or  conditions at the te rmina l  boundary 

3 Q N R N  
A N = h N t Q N  2A 

- 2QN R N  
- 

BN - A 

2-28 

g N = l N - Q  a 2-29 
N N  

2.3 FINITE DIFFERENCE FORMULATION IN THE TIME VARIABLE 

By the use  of difference equations the above differential  equation in 
m a t r i x  form may  be t ransformed into a s e t  of a lgebra ic  equations involving 
the variable z.  at successive values of time. 

1 
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The m o s t  commonly used a r e  the cent ra l  difference fo rms ;  however,  
f rom a numer ica l  stabil i ty aspect ,  the difference f o r m s  of Houbolt (Ref 3 and 
4) are  used. These f o r m s  a r e  

2 2  - 5 2  + 4 z  - z  .. j j - 1  j -2  j -3  z =  

1 1 ~  - 1 8 2  t 9 z  - 2 2  
j j -  1 j -2  j -3 

6b z =  2-30 

Where the subscr ip t  j r e f e r s  to the time interval  j = 0, 1, 2, . . . and & is the 
t ime increment .  

Introducing these expressions i n  Eq. 2-26 resu l t s  in the following set 
of a lgebraic  equations fo r  the shell  response problem. 

where  

- A z  N N , j f B N Z N - l , j t C N Z N - 2 ,  j - g N  

.I. 

A: = 6A.  
1 1 

a A .VI - d .  

'i, j = i ~ g  i + ( 1 0 , w i t 6 A p  i )  z i , j - l  t ( - 8  6 ai - 3APi ) zi, j - 2  

2-3 1 

I n  the real  problem n o  va lues  of z i  ex is t s  for  l e s s  than zero.  The 
assuniption t h a t  x i  does ex is t  before t = o is  a means  of allowing the r e c u r -  
r c n c ( .  f r o i n  Eq. (2-31)  to  apply a t  the origin as  well as  l a t e r  values of t ime. 
Furthc:rrrrorc ,  r i o  violation is made a s  long as  the init ial  conditions of t = o 
;I  r(: satisfied.  
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To obtain values f o r  the ficti t ious t e r m s  j = -1, - 2  a procedure similar 
to that  described by Houbolt is used. 
cation of BF 

The procedure wil l  requi re  a modifi- ::; for j = 1, 2. 
1, j '  gi, j 

The difference equations for  the first and second derivatives at the third 
increment  of four successive increments  a r e  given by 

.. 1 
z = - ( z  - 2 2  . t  

i , j  6 2  i, j t l  i, J 

( Z Z  t 3 ~  - 6  i = -  1 
i , j  66 i, j i, j 

1 i, j - 1  Z 

z i, j t z  i, j -2  1 2-32 

Applying the equations a t  t = 0, i .e .  j = o 

- 2 2 .  t z  .. 1 
2. = - ( z  
1, o 62 i, 1 1, o i ) - 1  

- ( 2 2  t 3 z .  - 6 2  t z  1 2-33 
1 

i , o - G  i, 1 1s 0 i , -1  i, j -2  
z 

The initial conditions a r e  the displacements  and velocit ies a r e  prescr ibed .  
( a t  t = 0). By application of Newton's second law, s secondary init ial  
condition can  be established, i. e .  , accelerat ion immediately following appli-  
cation of the init ial  forces .  These conditions a r e  

= di, o i, o 
z 

Z = v  
i, o i, o 

Z = a  i, o i, o 
2-34 

Where di ,  o, vi, o, a .  a r e  column n m a t r i c e s  formed of the respect ive 
1, 0 

coefficients of the Four i e r  expansions on e of the init ial  displacements ,  
velocit ies,  and accelerat ions a t  the meridional  location i. 

Substitution of these values into Eq. ( 2 .  32) yields the following relat ions 

z = d. i ,  o 1, o 
2 z = t a t 2d. - z i, -1  i, o 1, o i, 1 

2 
i, 1 z = 66 a .  -+ 66v. t 9d. - 82 

i, -2  1, 0 1,o  1, 0 
2-35 
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Substitution of these relat ions in  Eq. (2-31) for  j = 1 yields the following 
change in  the definitions of the a r r a y s  in  Eq.  (2-3 1) 

A 
= 6B. t 12--CU t 6APi  

.b B-'. 
i, 1 1 6 i  

f ( 1 2 A a .  1 t 4 A 6 p . )  1 v. 1, 0 2-36 

Substitution of definitions Eq. (2-31) for  j = 2 yields the following 
change in definitions of the a r r a y s  f o r  Eq. (2-31) 

A 16 A 5  t 2- A " . t -Ap i  6 a. 
6 1 3  ) 2 1 , 0  gi, * = hgi t ( 8  ai t 7 Pi ) z .  t ( - 4 ~  a i 7 A p i )  d. ( 1, 1 1, 0 

2-37 

The set of Eq. (2-31) and the additional definitions a t  the f i r s t  two t ime in te r -  
vals  is now the algebraic s ta tement  of the dynamic response  problem. 

2.4 MATRIX SOLUTION O F  THE DIFFERENCE EQUATIONS 

The s e t  of ma t r ix  equations (Eq. 2-31) will  be solved by the same  pro-  
cedure  descr ibed in Ref. 2. This procedure is essent ia l ly  a Gaussian el imi-  
nation per formed on the partitioned a r r ays .  A slight modification of the 
elimination procedure described in Ref. (3 )  is used here .  
f i r s t  and second equations of Eq. (2-31) a t  the jth time interval  

Considering the 

A z t B  Z .  t C  z . = g o  
0 2 , j  0 1, j 0 0 , J  

2-38 

Eliminating 2 . f rom the equations and solving for  z 
0 ,  J i, j 

2-39 
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which becomes the f o r m  of Ref. (2)  

z = - P  z . t x .  
1, j i , j  2 , ~  1, j 

where  

1 
[A 0 - C 0 C1-’AlJ 

-1 

’1, j = [Bo - CoCl -1 B 1, J .] 

I - 1 ::: -1 

l , j  = [B 0 - CoCl - ’ B “  1, J .] [go - CoCl g l ,  j 
X 

2-40 

2-41 

Retaining the fo rm of Eq. (2-40) for  all meridional  locations the general  
r e su l t s  become 

z = - P .  z t x. i, j i , j  i t 1 , j  i , j  

(i = 1, 2, 3 . . . N-1) 2-42 

Analogous to Ref. (2)  f o r m s  of P and x are  

I ] -’ A. P = [ Bi, - ci Pi-l, 
:;c 

1 i, j 

1 x. =[B hl - C .  1 P i-1, j ] - l  [gl , j  - c i x i - 1 , j  
1, j i, j 

(i = 2, 3 ,  4, . .. N-1) 2 -43 

Substituting the recurs ive  relation Eq. (2-42) into the last of Eq. (2-31) yields 

1 - l  

:$ 

z N, j = [AN ’ (‘N pN-2, j - BN, j )  pN,l, j 
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Having zN the solutions a t  previous stations, z N - I , ~ ,  Z N - ~ , ~ ,  e t c , ,  can be 
found by using the recurs ive  relation Eq. (2-42). 
f rom the second equation of Eq. (2-31) and is given by 

, i  Final ly  zo, j calculated 

1 .b 

- A z  -B" .  z 
o , j  = '1 - l  [ g l y j  1 2 , j  l , j  1 , j  

Z 2-45 

The elimination procedure described a s  for  the genera l  t ime interval  j. 
In the procedure for  solution of the dynamic response beginning a t  j = 1 and 
using the initial conditions to define the a r r a y s  BZ, 1 and g?, 1 Eq. (2 -36)  
the solution zi, 1 i s  obtained by the above outlined procedure.  F o r  the t ime 
in te rva l  j = 2 the definitions of Eq. (2-  37) a r e  used to der ive a c losed s e t  on 
zi ,  2. Successive solutions fo r  zi, j a r e  obtained f r o m  the genera l  f o r m s  
which use the previous solutions z i ,  j-1, z i ,  j - 2  to give an  algebraic  s e t  for  the 
unknown z i, j '  
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3.0  NUMERICAL COMPARISONS 

3. 1 INTRODUCTION 

The preceding analysis  was mechanized fo r  a digital computer.  The 
The fol-  analysis  was  specialized in o r d e r  to conform to fai lure  limitations. 

lowing l imitations were  made: 

1.  Single region shells 

2. Isotropic st iffness re la t ions 

3 .  Reference surface must  be the middle surface i . e . S  E < d <  = 0. 

4. Thermal  variations circumferent ia l ly  a r e  such that l imitat ion(s)  
is not distributed significantly. 

The computer programs with these l imitations w e r e  used to study 
seve ra l  problems.  

3 .2  CASE 1 

A comparison was  made on the ATRZO? Block 1 tes t .  This problem was  
studied because tes t  data and seL-eral other numerical  solutions were  avail-  
able.  The ATR209 configuration was an ax isymetr ic  spher ica l  cap  under an 
unsymmetr ic  loading. The problem is defined below. 

F igure  3-1. A T R  209 Geometry 
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The r e su l t s  of NAA unsymmetr ical  p rogram are compared with s e v e r a l  . 
other  investigators using other numer ica l  techniques and the t e s t  r e su l t s  i n  
F igc re  3 . 2 .  

Q N A A T E S T  - - - NAA FINITE DIFFERENCE, REF. . . . . . . . . . STEBBINS REF. 7 
BELL REF. 8 - NAA UNSYMMETRIC 

- - - -  

Figure  3-2. ATR 209 Tes t  Normal  Displacement Comparison 
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3 . 3  CASE 2 

A second problem was  considered to study the proper t ies  of the solu- 
tion fo r  an  unsymmetr ic  shell .  
c a p  under uniform p r e s s u r e  with a st iffer region on one side.  
below. 

This problem was a clamped unsymmetr ica l  
See f igure 

' I  FFER REGION 

GEOMETRY 
R = 90 S*  = 141.4 

REFERENCE LEVELS 
Eo = 1 
ho = 1 

= 1 
a = 141.4 
v =  0.3 

LOADING 
= 200 P S I  '' UNIFORM 

PRESSURE 

BOUNDARY CONDITI ONS 
CLAMPED 

Figure  3 - 3 .  Step Hemisphere Geometry  

F o r  this problem, the Four i e r  s e r i e s  approximatly the discontin io1 s 
st iffness distribution was  truncated after 10 t e r m s .  
loading, individual Four i e r  coefficient solutions (w,) for  no rma l  deflection 
a r e  given i n  F igure  3 - 5  as a function of the meridional  coordinate.  
seen  that the genera l  cha rac t e r  of the displacement pat tern re f lec ts  the 
F o u r i e r  s t i f fness  distribution profile. 
because the higher o r d e r  harmonics  of the solution diminish in magnitude. 
The total  deflection obtained by summing the Four i e r  contributions is  plotted 
along the plane of symmet ry  ( e  = 0-180 deg) in F igure  3 - 6 .  
the def lect ions obtained fo r  ax isymmetr ic  shel ls  with uniform stiffness d i s t r i  
butions corresponding to the magnitude of the stiff and weak s ides .  
expected, these r e su l t s  bracke t  the solution fo r  the var iable-r igidi ty  shell .  

F o r  a uniform p r e s s u r e  

It can  be  

A convergence t rend  is  exhibited 

Also shown are 

As  
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h LO 

0 

Figure 3 -4. Four i e r  Components of the Membrane Stiffness Distribution 
for  the Hemispherical  Shell Problem 

Figure 3 -5. Four i e r  Component Distribution of Normal  Displacement 
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NORMAL D I  SPLACEMENT 
W I N  INCHES 

4 

e =  oo 0. 15 e = 1800 'EAK S IDE 

0.10 t R I G  I D  ITY 
SOLUTION 

f 

, 
-1 -0. 5 0 0.5 1 

MER I D I  ONAL COORD I NATE ( ) 

Figure  3-6 .  Meridional Distribution 
of Total Normal Displacement 

The s a m e  problem was a run with only three  and five terms retained i n  
Variation i n  the third harmonic of deflection the st iffness s e r i e s  expansions. 

(w2) along the mer id ian  is plotted in Figure 3-7 f o r  the c a s e s  where  K is se t  
equal to 3 ,  5, and 10. The higher harmonic coupling effects appear  to 
diminish a s  m o r e  t e r m s  a r e  retained i n  the solution ( i . e . ,  a s  K inc reases ) .  

F o r  economic p ~ ~ r i m s e s ,  the number of intekration points used i n  
obtaining the above numerical  resu l t s  w a s  N = 26 for Case 11. The basic 
cha rac t e r  of the solutiorls i s  i l lustrated for  these relatively coa r se  g r i d s .  
Additional studies have shown increased accuracy  when a finer finite dif- 
f e r ence  m e s h  is taken. 
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MERIDIONAL COCRDINATE ([ 1 

Figure  3 -7. Meridional Distribution 
of Third F o u r i e r  Component of 
Solutio11 fo r  K = 3, 5, and 10  
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3.4  CASE 3 .  

The third problem studied was  the Apollo t e s t  shield under a s ta t ic  pad 
load similar t o  the input load distribution. The geometry is given below. 

F igu re  3-8. Apollo ‘Test Shield Geometry 

A comparison with severa l  other  techniques i s  given in the following 
Figure  3 - 9 .  

0.4 

- - -  BELL REF. I 

NAA UNSYM. 

NAA FINITE DIFF. _ _  _. 

Figure  3-9.  Normal Displacement Along the Plane of Symmetry 
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3.5 CASE 4 

The fourth problem considered was  a simply supported cylinder sub- 
jected to a uniform semisinuoidal pulse. 
given below. 

The configuration and loading is 

37.0g' 

k-, 184.4" 

Pinned 

1000. 

Time 
:003113 L 0.4054" 

Figure  3-10. Cylinder Geometry and Loading 

Several  solutions were  obtained using v e r y  crude spacial  and t ime 
gr ids .  
following Figure 3 - 11. 

A comparison is made to other  analytic and numer ica l  solutions in  the 

I 
SHENG'S SOLUTION 

J 

0 
# 

0 
C 0  

\ 

# 
\ NAA SYMMETRIC 
\ 

/ A \ 
SHELL DYNAMICS / 
A A  P?, 

\ 

'iu 3 1  

NAA UNSYMMETRIC 
SHELL DYNAMICS 
6 ST I ̂ . ^  

REF. 9 

Figure  3-1 1. Dynamic Response of Cylinder 
to  a Uniform Semi-Sinsoidal Pu l se  
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1.1 APPENDIX 

Modification of Sande r ' s  Equations 

Virtual change in  the s t r a in  energy within C 

1 1 1 1 
- M  bk - - M  6 k 1 2 t - M  Ok - - M  6k + 
2 21 12 2 21 2 12 21 2 12 21 
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Group. 

Expanding ' - d (oy)  
( 6  

Substitute and Group. 
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As sumption 

bay ,  
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APPENDIX 1 .2  

Multiplication of Se r i e s  Expansions 

The relationships AnJ and AnJ used in  the text a r e  found by multi- 
plying t e r m  by t e r m  the s e r i e s  expansions of st iffness and s t r a in  and noting 
a recur r ing  sequence of the result ing expressions 

e. g. ( Kg J = O  b j c o s j O ) ( y l c E n c o s n e )  n= o = ?$'(Kg n=o J = O  Anjccj)  c o s n e  

2 K-1 K-1 

= 2 1 $[b(ntJ)t 11 - 1 5  ( J  - k )  
n-o J = O  

t 6(k) ]  b In-j I ] E  E j  1 c o s n 8  

j= o n- 1 

2 K-1 K-1 

= 2 1 [ -b(n t j ) t  11  - 6 ( j -k)  
n = l  J = O  

where 

-1  m < o  

o m = o  

t1 m > o  

6(m) = 
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APPENDIX 1.3 - COEFFICIENTS 

= BY 

= ACY 

f 5 k t l ,  5 j t l  

f 5 k t l ,  5 j t 4  

2 
k j 

f5k t2 ,  5 j t5  2 4 e 5 1 3  
X k j  A - - -G12  t - ( W  - 0  ) G  

= G2 k j 
f5k t3 ,  5 j t3  

f = A C Y  
5kt4,  5 j t l  

2 k j  = A D  
f5kt4 ,  5 j t4  1 

k j - X k j  A2 f - y G 1 2  t 4 ( w e - "  ) G  5kt5,  5 j t2  5 13 

2 x k j  - 

f 5 k t 5 , 5 j t 5  - 2 G13 

= B1 kj  t Y B l  k j 
'5kt1, 5 j t l  

2 
k j k k j  Xk kj  X k  

c7 = A-C t ---G t T P ( W ~ - W ~ ) G ~ ~  - 5 k t 1 , 5 j t 5  P 3 2 P  12 
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k k j  A2k 2 k j  k k j  
'5k t2 ,5 j t l  - -  - 2P G 1 t ' 8 p  ( W e - w t )  G13 - 7 B 3  

A kj '  & ' Gkj A k j  t 'z- (Ue - w ) G  6 12 - 2 W 5  1 2 + Z G 1  
- 

'5kt2, 5 j t2  - - 2 

t T ( W e - w t )  h2 2 G13 kj'  - - Y ( w e - W s )  X 2  2 .t 2 ~ ;  

A k j '  X Y  GY2 t 7 X2 (u; -u t  13 

8 

) Gkj 
k k j  h2 .& 
-I 

h k  Gkj 
'5kt2, 5 j t 4  - - - 2P 12 - xpc3  4 p ("e '"5 13 

- 

)Gkj '  t g5kt2, 5 j t5  = z  G12 2 
2 

+ 4  h 2Y(Us- 

- W  G k j  k j Bkj 
g5kt3, 5 j t l  5 2 - W ~ B i  - w e  3 

= G 2  kj  t Y G 2  k j  
g5kt3, 5 j t3  

g5kt3, 5 j t 4  = G2 

'5kt4, 5 j t  1 t AYCY 

'5kt4,5jt2 = ' F C 3  12 4 P e 5 13 

kj - X w  c k j  - X U  c k j 
s 1  6 3  

k k j  Xk Gkj t - - ( W  A 2 k  - W  ) G  k j 

= x w  Ckj t h w  Ckj - G y  
'5kt4, 5 j t3  6 1  e 3  

2 kj '  2 k j  
'5kt4,5jt4 = A D1 t Y h  D1 

2 k k j  A k Gkj 
'5kt4,5j t5  = A - P 3  ' 2 7 13 

2 

h k akj A 2  k k j  Xk k j  
= I -  t -- - ~ t ) G 1 3  - P C3 '5kt5, 5 j t l  2 7  12  4 P  
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t 'z- A (Ue - w ) G  kj'  & ' Gkj A k j  
6 12 - 2 W 5  1 2 + Z G 1  

- 
'5kt2, 5 j t2  - - 2 

) Gkj 
k k j  h2 .& 
-I 

h k  Gkj 
'5kt2, 5 j t 4  - - - 2P 12 - xpc3  4 p ("e '"5 13 

- 

)Gkj '  t 13 
X2 

GY2 t 7 (u; -u t  
A kj '  X Y  

g5kt2, 5 j t5  = z  G12 2 
3 

= G 2  kj  t Y G 2  k j  
g5kt3, 5 j t3  

= G2 g5kt3, 5 j t 4  

g5kt4, 5 j t l  = "1 k j '  t AYCY 

kj - X w  c k j  - X U  c k j 
s 1  6 3  

k k j  k j = A - C  Xk Gkj A 2 k  
'5k+4,5jt2 P 3 t T  12 t - - ( w ~ - w  4 P  5 ) G  13 

2 kj '  2 k j  
'5kt4,5jt4 = A D1 t Y h  D1 

2 k k j  A k Gkj 
'5k+4,5jt5 = A - P 3  ' 2 7 13 

2 

- h k akj A 2  k k j  Xk k j  
'5kt5, 5 j t l  - I T 7  1 2 t - -  4 P  - ~ t ) G 1 3  - P C3 
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. 
. 

A Y  k j  
2 12 t - G  

2 
- A 2  k j '  A k j 

'5kt5,  5 j t 5  -2 G13 t 2 Y G 1 3  

2 
k j '  - w  B - G Y  = YB3 

2P f e  3 h 5 k t l ,  5 j t l  

k k j  Y k  k j  Y k k j  - Y - B  - - - G  f z ( W e - W  ) A - G  k k j '  - - -  
h 5 k t l , 5 j t 2  P B3 P 2  2 P  1 6 .  P 12 

k j  k j  k j  - y~ B k j 
= w B +- wgB3 t (w '  t Y u c ) B 1  e 2  5 5 k t 1 ,  5 j t 3  1 

h 

X k 2 Gkj  
k j kj '  2 k j  C t Y A C 3  - Y  AC t w  G k j - - -  - 

2 6 2 2 p 2  12 h - - X W e W e  5 k t 1 ,  5 j t 4  

- k k j '  - - Yk G kj t - Ay k - ( w e - w g ) G 1 2  kj - - Y B y  k P 
- - -  

5 k t 2 ,  5 j t  1 2 P  G1 2 P  1 2 P  
h 
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X Y  kj '  h5kt2, 5 j t5  = -7 G12 - 

t A 2 Y  - W I G  k j  
4 6 13 

= -(w'  + Y w  ) G  kj - w  y B  kj -weYB2 k j  -wEGZ kj '  

= - - W  k B kj 

h5kt3, 5 j t l  s 5 2  6 3  

h5kt3, 5 j t2  p s 3 - 7  e 2  k u  B k j - w e F G 3  k k j  
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. 

2 
A k k k j  k j  -b - - Y (" )GkJ - A Y  - c 

5kt4,  5j+2 P 3  - - Z - P G 1 2  4 P e-"C 13 P 2  
k kj '  XY k = A -  C h 

h =Aw1Ckj + Ayw C k j - X y w  CkJ tAw5Cl kj '  t A w  'C  k j  I 
5kt4,  5 j t3  5 1  k 1  e 2  8 3  

2 
2 k k j '  A y k  Gkj - 2 y - D  k k j  = A  - D  - - -  

5k+4, 5j+5 P 3  2 P 13 P 2  
h 

- - - 2 X k g ' f G 1 2  k j  - 7 A k G12 kj' + 7 A2 k (0 0 - w g ) G l 3  kj  I 
h5k+5, 5j+l  

A 2 kj A Y  kj' 
11 5kt5 ,  5j+2 = 'z- (w5"s-  Y ICl2 - 2 G12 

= - - w  k CkJ - h -  k w Ckj + - k G kj  
P 5 3  ~ e 2  P 3 

h 
5kt5,  5 j t3  

A 2  k k j '  2 k k j  h2 
2 F- G13 P 2  2 P 

- A  -YD - - - - - -_ h 
5k+5, 5j+4 

A 2 y  k j '  2 k2  k j  k j  A 2  2 k j  h - - -  - G 1 3 - A - D  - G3 + 7 ( W c U o - Y  )G13 
5k+5, 5 j t5  P 2  
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- tk ) k k '  
'5kt 1 = - p5 t tST t Y ( t i T  0T 

k - k t k  
'5kt2 =-'e P 8T 

k k k 
-"5tST - "  8T 

= - p  
'5kt3 

2 k '  2 k  2 k  
'5kt4 = A m S T t A  6 m T -  Am 8T 

- k 2 k  _ -  - - X  m 8T '5kt5 P 

= B1 k j 
5 k t 1 , 5 j t l  

5kt1, 5 j t 4  = "1 

r 

k j r 

2 2 k j  
8 

r = 7 1 G1 k j  t ?  A G12 k j  ( " e - " c )  + - A ( ~ 0 - u ~ )  G13 5kt2, 5 j t2  

2 
= -  A c k j  t A T ( " ~ - W ~ ) G ~ ~  k j 

= G2 k j 

5kt2, 5 j t5  2 12 
r 

5kt3, 5 j t3  
r 

1 k j  
C - -  

5kt4, 5 j t l  - A 1 

5kt4, 5 j t4  = D l  

1 
5kt5, 5 j t2  2X 

r 

k j r 

- - - t ("' "') G:"; r 

- 1 Ckj 
5kt5, 5 j t5  - 2 13 r 
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S = AB3 k j 
5 k t  1, 5 j t  1 

k k j  
5kt1,  5 j t2  = B3 S 

- w  B k j + w  B k j 
- 5 1  e 3  

S 5 k t  1, 5 j t3  

S = YAC3 k j  
5k t  1, 5 j t4  

k A k j  - _  
5 k t l Y 5 j t 5  - P '3 S 

2 kj  
t 8 P ( W  e - " * )  G13 5kt2,  5 j t  1 2P 1 

2 k kj  A k  
- - - -  G S 

2 
Y k j  A 
2 8 

- h k  k j - X  k 

- - - -  G1 t -Y ( ~ 0 - w  S 5kt2,  5 j t2  

2 
) Gkj 

S 5kt2,  5 j t4  - - ~ ~ ~ 1 2  2 p ( w e - w 5  13 

- - -YG A kj  - y A2 4 ( w e  - W  ) G  k j 
- 2 12 5 13 

S 
5kt2,  5 j t5  

k j 
= - " t G 2  

S 
5kt3,  5 j t 4  

S = G2 k j 
5kt3,  5 j t4  

- Y k j  
5kt4,  5 j t l  - x '3 S 

- k k j  
S - -.c 

5k+4, 5 j t2  X P  3 

w 5  kj  k j  
S - - -- c f - C  

5kt4,  5j+3 A 1 A 3  

S - YD? 5kt4,  5 j t4  
c 
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k k j  
= - D3 

5 k t 4 , 5 j t 5  P S 

- - -  - ckj t $ ( ~ e - ~ ~  )Gkj 13 5 k t 5 , 5 j t 2  2 x  12 S 

k k j  
2 P  13 - G  - - -  S 

5kt5,  5 j t4  

- Y kj  
- - G13 5kt5,  5 j t5  

S 

All other r ,  s,  a a r e  equal to zero.  

Index k, j 0 ,  1----K 

kj  
1 cy = m  

5kt1,  5 j t l  

k j 
5kt2,  5 j t2  = m2 cy 

k j 

k j  

k j 

1 5kt3,  5 j t3  

5kt4,  5 j t 4  = m4 

5kt5,  5 j t 5  = m5 

cy = m  

cy 

cy 

P = c1 k j 
5kt1,  5 j t l  

= c2 k j 
'5kt2, 5 j t2  

= c1 k j 
'5k+3,5jt3 
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= c4 k j  

= c5 k j 

ki 

= k 2  k j 

= k l  k j 

k = k4 k j 

k j 

'5kt4, 5 j t 4  

'5kt5, 5 j t 5  

k 5 k t l ,  5 j t l  = k l  

k5k t2 ,  5 j t 2  

k5k+3, 5 j t 3  

5k t4 ,  5 j t 4  

k5k t5 ,  5j 5 = k g  

All other C Y ' S ,  P I S ,  and k's are equal to zero .  
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